skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaiswal, Prateek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nguyen, XuanLong (Ed.)
    We study the asymptotic consistency properties of α-Rényi approximate posteriors, a class of variational Bayesian methods that approximate an intractable Bayesian posterior with a member of a tractable family of distributions, the member chosen to minimize the α-Rényi divergence from the true posterior. Unique to our work is that we consider settings with α > 1, resulting in approximations that upperbound the log-likelihood, and consequently have wider spread than traditional variational approaches that minimize the Kullback-Liebler (KL) divergence from the posterior. Our primary result identifies sufficient conditions under which consistency holds, centering around the existence of a ‘good’ sequence of distributions in the approximating family that possesses, among other properties, the right rate of convergence to a limit distribution. We further characterize the good sequence by demonstrating that a sequence of distributions that converges too quickly cannot be a good sequence. We also extend our analysis to the setting where α equals one, corresponding to the minimizer of the reverse KL divergence, and to models with local latent variables. We also illustrate the existence of good sequence with a number of examples. Our results complement a growing body of work focused on the frequentist properties of variational Bayesian methods. 
    more » « less
  2. This paper establishes the asymptotic consistency of theloss‐calibrated variational Bayes(LCVB) method. LCVB is a method for approximately computing Bayesian posterior approximations in a “loss aware” manner. This methodology is also highly relevant in general data‐driven decision‐making contexts. Here, we establish the asymptotic consistency of both the loss‐ calibrated approximate posterior and the resulting decision rules. We also establish the asymptotic consistency of decision rules obtained from a “naive” two‐stage procedure that first computes a standard variational Bayes approximation and then uses this in the decision‐making procedure. 
    more » « less